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ABSTRACT 

Principal Components Analysis (PCA) is a practical and standard statistical tool in modern data analysis that has found application in different areas such as face 
recognition, image compression and neuroscience. It has been called one of the most precious results from applied linear algebra. PCA is a straightforward, non-
parametric method for extracting pertinent information from confusing data sets. It presents a roadmap for how to reduce a complex data set to a lower dimension 
to disclose the hidden, simplified structures that often underlie it. This paper mainly addresses the Methodological Analysis of Principal Component Analysis 
(PCA) Method. PCA is a statistical approach used for reducing the number of variables which is most widely used in face recognition. In PCA, every image in the 
training set is represented as a linear combination of weighted eigenvectors called eigenfaces. These eigenvectors are obtained from covariance matrix of a training 
image set. The weights are found out after selecting a set of most relevant Eigenfaces. Recognition is performed by projecting a test image onto the subspace 
spanned by the eigenfaces and then classification is done by measuring minimum Euclidean distance. In this paper we present a comprehensive discussion of PCA 
and also simulate it on some data sets using MATLAB. 
 
Index Terms— Principal component, Covariance matrix, Eigenvalue, Eigenvector, PCA, MATLAB. 

——————————      ——————————  
 

1. INTRODUCTION 

Principal component analysis is also called “Hotteling 

transform” or “Karhunen-leove (KL) Method”. Principle 
Component Analysis (PCA) is one of the most frequently 
used multivariate data analysis. Principle Component 
Analysis can be considered as a projection method which 
projects observations from a p-dimensional space with p 
variables to a k-dimensional space (where k < p) so as to 
conserve the maximum amount of information 
(information is measured here through the total variance 
of the scatter plots) from the initial dimensions. If the 
information associated with the first 2 or 3 axes represents 
a sufficient percentage of the total variability of the scatter 
plot, the observations will be able to be represented on a 
2- 3-dimensional chart, thus making interpretation much 
easier [1].  
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Principal component analysis (PCA) involves a 
mathematical procedure that transforms a number of 

(possibly) correlated variables into a (smaller) number of 
uncorrelated variables called principal components. The 
first principal component accounts for as much of the 
variability in the data as possible and each succeeding 
component accounts for as much of the remaining 
variability as possible [2]. 
 
2.OBJECTIVES OF PRINCIPAL COMPONENT 
ANALYSIS 
 

  To discover or to reduce the dimensionality of 
the data set.  

  To identify new meaningful underlying 
variables. 

The mathematical technique used in PCA is called eigen 
analysis: we solve for the eigenvalues and eigenvectors of 
a square symmetric matrix with sums of squares and cross 
products. The eigenvector associated with the largest 
eigenvalue has the same direction as the first principal 
component. The eigenvector associated with the second 
largest eigenvalue determines the direction of the second 
principal component. The sum of the eigenvalues equals 
the trace of the square matrix and the maximum number 
of eigenvectors equals the number of rows (or columns) of 
this matrix [2].    

 
 
3. CHARACTERISTICS OF PRINCIPAL 
COMPONENTS 
The first component extracted in a principal component 
analysis accounts for a maximal amount of total variance 
in the observed variables. Under typical conditions, this 
means that the first component will be correlated with at 
least some of the observed variables.  It may be correlated 
with many.  The second component extracted will have 
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two important characteristics. First, this component will 
account for a maximal amount of variance in the data set 
that was not accounted for by the first component.  Again 
under typical conditions, this means that the second 
component will be correlated with some of the observed 
variables that did not display strong correlations with 
component 1.The second characteristic of the second 
component is that it will be uncorrelated with the first 
component.  Literally, if you were to compute the 
correlation between components 1 and 2, that correlation 
would be zero. 

The remaining components that are extracted in the 
analysis display the same two characteristics: each 
component accounts for a maximal amount of variance in 
the observed variables that was not accounted for by the 
preceding components, and is uncorrelated with all of the 
preceding components.  A principal component analysis 
proceeds in this fashion, with each new component 
accounting for progressively smaller and smaller amounts 
of variance (this is why only the first few components are 
usually retained and interpreted).  When the analysis is 
complete, the resulting components will display varying 
degrees of correlation with the observed variables, but are 
completely uncorrelated with one another [3]. 

4.  PRINCIPAL COMPONENT ANALYSIS IS 
NOT FACTOR ANALYSIS 
 
Principal component analysis is sometimes confused with 
factor analysis and this is understandable, because there 
are many important similarities between the two 
procedures.      Both are variable reduction methods that 
can be used to identify groups of observed variables that 
tend to hang together empirically.  Both procedures can be 
performed with the SAS System’s FACTOR procedure 
and they sometimes even provide very similar results. 
Nonetheless, there are some important conceptual 
differences between principal component analysis and 
factor analysis that should be understood at the outset.  
Perhaps the most important deals with the assumption of 
an underlying causal structure: factor analysis assumes 
that the co-variation in the observed variables is due to the 
presence of one or more latent variables (factors) that 
exert causal influence on these observed variables.  An 
example of such a causal structure is presented in Figure 
5.1. The ovals in Figure 1 represent the latent 
(unmeasured) factors of “satisfaction with Supervision” 
and “satisfaction with pay.”  These factors are latent in the 
sense that they are assumed to actually exist in the 
employee’s belief systems, but cannot be measured 
directly. However, they do exert an influence on the 
employee’s responses to the seven items that constitute 
the job satisfaction questionnaire described earlier (these 
seven items are represented as the squares labelled V1-V7 
in the figure).  It can be seen that the “supervision” factor 
exerts influence on items V1-V4 (the supervision 

questions), while the “pay” factor exerts influence on 
items V5-V7 (the pay items).  

Figure-1: Example of the Underlying Causal Structure that 
is assumed in Factor Analysis 

 
Researchers use factor analysis when they believe that 
certain latent factors exist that exert causal influence on 
the observed variables they are studying.  Exploratory 
factor analysis helps the researcher identify the number 
and nature of these latent factors. In contrast, principal 
component analysis makes no assumption about an 
underlying causal model.  Principal component analysis is 
simply a variable reduction procedure that (typically) 
results in a relatively small number of components that 
account for most of the variance in a set of observed 
variables [3].In summary, both factor analysis and 
principal component analysis have important roles to play 
in social science research, but their conceptual 
foundations are quite distinct.  
 
 
5.  PRINCIPAL COMPONENT ANALYSIS 
METHOD 
 
Step 1: Get some data 
 Let us consider a simple arbitrary three dimensional data 
set. The reason why I have chosen this is so that I can 
provide plots of the data to show what the PCA analysis is 
doing at each step. The data I have used is found in Figure 
2, along with a plot of that data. 
 
Step 2: Subtract the mean 
For PCA analysis, you have to subtract the mean from 
each of the data dimensions. The mean subtracted is the 
average across each dimension. So, all the x values have  x	 
(the mean of the values x of all the data points) subtracted, 
and all the y values have y	 subtracted from them and all 
the z values have 푧̅ subtracted from them. This produces a 
dataset whose mean is zero.     
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Figure-2: Plot of Original Data Set 
 
 
 
 
                      

 
                                              

Figure-3: Plot of New Adjusted Data Set 
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 Figure-4: Plot of Original Data Set and New Adjusted 
Data Set along an arbitrary axis.   
 
Step 3: Calculate the covariance matrix 
Since the data set is 3 three dimensional, so the covariance 
matrix will be 3 × 3 as discussed in section 3.2.2. Now, the 
covariance matrix of new adjusted data set is:      
   

 
 
		푐표푣푎푟푖푎푛푎푐푒	푚푎푡푟푖푥,				푐		

= 	
	3.1878		 0.6630	 −0.4734
0.6630 0.1407 −0.1041

−0.4734			 	−0.1041 0.0989
 

Step 4: Calculate the eigenvectors and eigenvalues of the 
covariance matrix 
Since the covariance matrix is square, we can calculate the 
eigenvectors and eigenvalues for this matrix. These are 
rather important, as they tell us useful information about 
our data. The eigenvectors and eigenvalues are: 
Eigenvalues =   (0.0016, 0.0288, 3.3970) 
Eigenvectors  

                         V = 	
			0.1710 			0.1806 −0.9686
−0.9648 −0.1688 −0.2019
−0.2000 			0.9690 			0.1454

 

Where,  

         Eigenvalue= 0.0016 for eigenvector 
			0.1710
	−0.9648
−0.200

  

         Eigenvalue= 0.0016 for eigenvector 
			0.1806
	−0.1688
				0.9690

 

          Eigenvalue= 0.0016 for eigenvector 
			−0.9686
	−0.2019
				0.1454

 

 
It is important to notice that these eigenvectors are both 
unit eigenvectors ie.  Their lengths are both 1. This is very 
important for PCA, but luckily, most mathematics 
packages, when asked for eigenvectors, will give you unit 
eigenvectors. 
 

 
                                   Figure-5: Plot of eigenvectors 
Step 5: Choosing components and forming a feature 
vector 
Here is where the notion of data compression and 
reduced dimensionality comes into it. If you look at the 
eigenvectors and eigenvalues from the previous section, 
you will notice that the eigenvalues are different values.  
In fact, it turns out that the eigenvector with the highest 
eigenvalue is the principle component of the data set. 
 
In our example, the eigenvector with the largest 
eigenvalue was the one that pointed down the last of the 
data.  It is the most significant relationship between the 
data dimensions. In general, once eigenvectors are found 
from the covariance matrix, the next step is to order them 
by eigenvalue, highest to lowest. This gives you the 
components in order of significance. 
                Feature Vector = (eigenvector 1, eigenvector 2 … 
… … … ...  eigenvector n) 
Now, if you like, you can decide to ignore the components 
of lesser significance. You do lose some information, but if 
the eigenvalues are small, you don’t lose much.  If you 
leave out some components, the final data set will have 
less dimensions than the original. 
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To be precise, if you originally have dimensions in your 
data, and so you calculate eigenvectors and eigenvalues, 
and then you choose only the first   eigenvectors, then the 
final data set has only   dimensions. What needs to be 
done now is you need to form a feature vector, which is 
just a fancy name for a matrix of vectors.  This is 
constructed by taking the eigenvectors that you want to 
keep from the list of eigenvectors, and forming a matrix 
with these eigenvectors in the columns. For our given 
example set of data, and the fact that we have 3 
eigenvectors, we have three choices. We can either form a 
feature vector with all of the eigenvectors as: 

                                   
−0.9686 				0.1806	 						0.1710		
	−0.2019	 −0.1688 −0.9648
			0.1454 			0.9690 −0.2000

 

 
Or, we can choose first two eigenvectors i.e. first two most 
significant components as : 

                                                 
−0.9686 		0.1806	
−0.2019	 −0.1688

0.1454 		0.9690
 

Or, we can choose only most significant component i.e. 
principal component: 

  
−0.9686
−0.2019
0.1454

 

 
Step 6: Deriving the new data set 
In order to find out new final data set, we have chosen the 
components (eigenvectors) that we wish to keep in our 
data and formed a feature vector, we simply take the 
transpose of the vector and multiply it on the left of the 
original data set, transposed. 
                         Final Data Set = Row Feature Vector × Row 
Adjusted Data Set 
                           = Feature Vector T × Adjusted Data Set T 
Where, Row Feature Vector is the matrix with the 
eigenvectors in the columns transposed so that the 
eigenvectors are now in the rows, with the most 
significant eigenvector at the top, and Row Adjusted Data 
Set is the mean-adjusted data transposed, i.e. the data 
items are in each column, with each row holding a 
separate dimension. What will this give us? It will give us 
the original data solely in terms of the vectors we chose.  
Our original data set had three dimensional, so our data 
was in terms of them.   
 
If these axes are perpendicular, then the expression is the 
most efficient. This was why it was important that 
eigenvectors are always perpendicular to each other. We 
have changed our data from being in terms of the axes x, y 
and z, and now they are in terms of our 3 eigenvectors. In 
the case of when the new data set has reduced 
dimensionality, i.e. we have left some of the eigenvectors 
out, the new data is only in terms of the vectors that we 
decided to keep. To show this on our data, I have done the 
final transformation with each of the possible feature 
vectors. I have taken the transpose of the result in each 
case to bring the data back to the nice table-like format. I 

have also plotted the final points to show how they relate 
to the components. 
 
To show this on our data, I have done the final 
transformation with each of the possible feature vectors. I 
have taken the transpose of the result in each case to bring 
the data back to the nice table-like format. I have also 
plotted the final points to show how they relate to the 
components. In the case of keeping both eigenvectors for 
the transformation, we get the data and the plot found in 
Figure 5.6 and Figure 5.7. This plot is basically the original 
data, rotated so that the eigenvectors are the axes. This is 
understandable since we have lost no information in this 
decomposition. 
                          
 
   Transformed Data Set = Row Final Data Set 
                                       = Final Data Set T 

The calculated transformesd data set is given below: 
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Figure-6: Plot of Transformed Data set 

Figure-7: Plot of Transformed Data set along an arbitrary 
axis 

 
 
 
 Step 7: Getting the old data back 
This step is most important to recover the original data 
set. If we took all the eigenvectors in our transformation 
will we get exactly the original data back. If we have 
reduced the number of eigenvectors in the final 
transformation, then the retrieved data has lost some 
information. Now, Recall the equation of the final data set 
that is used in step 6: 
                         Final Data Set = Row Feature Vector × Row 
Adjusted Data Set 
                            = Feature Vector T × Adjusted Data Set  

Now, Row Adjusted Data Set = Final Data Set × Row 
Feature Vector - 1 

Where, Row Feature Vector-1 is the inverse of Row Feature 
Vector. However, when we take all the eigenvectors in our 
feature vector, it turns out that the inverse of our feature 
vector is actually equal to the transpose of our feature 
vector. This is only true because the elements of the matrix 

are all the unit eigenvectors of our data set.  This makes 
the return trip to our data easier, because the equation 
becomes: 
Row Adjusted Data Set = Final Data Set × Row Feature 
Vector T 
But, to get the actual original data back, we need to add 
on the mean of that original data (remember we 
subtracted it right at the start).  
 So, Original Data Set = [Final Data Set × Row Feature 
Vector T] + Original Mean 
This formula also applies to when you do not have all the 
eigenvectors in the feature vector. So even when you leave 
out some eigenvectors, the above equation still makes the 
correct transform. I will not perform the data re-creation 
using the complete feature vector, because the result is 
exactly the data we started with. However, I will do it 
with the reduced feature vector to show you how 
information has been lost. Figure 8 and 9 show this plot. 
Compare it to the original data plot in Figure 2 and Figure 
4. 
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Figure-8: Plot of Reconstructed Data Set using only a 
single eigenvector 

 
Figure-9: Plot of Reconstructed Data Set along an arbitrary 

axis using only a single eigenvector 
 
 
   
         
6.  CONCLUSION 
The problem of dimension reduction is introduced as a 
way to overcome the curse of the dimensionality when 
dealing with vector data in high-dimensional spaces and 
as a modelling tool for such data. It is defined as the 
search for a low-dimensional manifold that embeds the 
high-dimensional data. A methodological analysis of 
dimension reduction problems is performed in this paper. 
 
7. FUTURE WORK 
In future, we will apply this method for face recognition. 
 
 
 
 
 
REFERENCES  

 
[1].http://www.xlstat.com/en/productssolutions/feature/pr
incipal-component analysis  
[2].http://www.fon.hum.uva.nl/praat/manual/Principal_co
mponent_analysis. 
[3]. Hatcher, L. & Stepanski, E. A step by step approach to 
using the SAS system for univariate and multivariate 
statistics. Cary, NC: SAS Institute Inc, 1994. 
[4]. Lindsay I Smith, A tutorial on Principal Component 
Analysis, February 26, 2002. 
[5]. Prof. Y. Vijaya Lata , Chandra Kiran Bharadwaj 
Tungathurthi , H. Ram Mohan   Rao, Dr. A. Govardhan , 
Dr. L. P.  Reddy ,  “ Facial Recognition using Eigenfaces 
by PCA”.International Journal of Recent Trends in 
Engineering, Vol. 1, No. 1, May 2009. 
[6] M. Turk, A. Pentland: Face Recognition using 
Eigenfaces, Conference on Computer Vision and Pattern 
Recognition, 3 – 6 June 1991, Maui, HI , USA, pp. 586 – 
591.  
[7] Prof. Y. Vijaya Lata , Chandra Kiran Bharadwaj 
Tungathurthi , H. Ram Mohan Rao , Dr. A. Govardhan , 
Dr. L. P.  Reddy Department of Computer Science and  
Engineering, Gokaraju Rangaraju Institute of Engg&Tech,  
Jawaharlal Nehru Tech. University,Facial Recognition 
using Eigenfaces by PCA. 
[8] Mrunal S. Bewoor, Assistant Professor, Dept Of 
Computer Engineering, Emerging Trends in Computer 
Science and Information Technology -2012(ETCSIT2012), 
Face Recognition using Principle Component Analysis, 
,Proceedings published in International Journal of 
Computer Applications® (IJCA). 
[9] Sheraz  Jadoon ,Face Recognition Approach, School 
and Health Socity, Kristainstad University College, SE- 
291 88 Kristainstad, Sweden. 
              
 
Authors profile: 
 

 
 
 
 
 
 
First Author: Liton Chandra Paul 

completed his B.Sc. (First class first with honors) in 
Electronics & Telecommunication Engineering (ETE) from 
Rajshahi University of Engineering & Technology (RUET), 
Bangladesh, in 2012. Currently, he is a lecturer of 
Electronics and Communication Engineering department 
at the University of Information Technology & Sciences 
(UITS), Bangladesh. He has four international journals, 
two international conference papers and one national 
conference paper. His research interests include Antenna, 
Mobile communication, Wireless & Satellite 
Communication, Image Processing etc. 
 

269.2

269.4

269.6

269.8

270

270.2

270.4

270.6

270.8

266 268 270 272 274

y/
z

x

(x,y)

(x,z)

0 5 10 15
0

50

100

150

200

250

300

Arbitrary value

x/
y/

z

 

 
X Y Z



International Journal of Scientific & Engineering Research Volume 4, Issue3, March-2013                                                                                         8 
ISSN 2229-5518   

IJSER © 2013 
http://www.ijser.org  

 

 
Second Author: Lakshman Shaha completed his B.Sc. in 
Electronics & Telecommunication Engineering (ETE) from 
Rajshahi University of Engineering & Technology (RUET), 
Bangladesh, in 2010. He is working at Grameenphone, 
SOC, GP Head office, Bashundhara , Dhaka, Bangladesh. 
 
 
 
 
 
                                          
 
 
 
 
                                       Third Author: Abdulla Al Suman 
received his B.Sc. in Electronics & Telecommunication 
Engineering (ETE) from Rajshahi University of 
Engineering & Technology (RUET), Bangladesh, in 2010.  
He is pursuing his M.Sc. in EEE from RUET. Currently, he 
is a lecturer of ETE at the RUET. He has more than 4 int’l 
journal and 2 int’l conference paper. His research interests 
include Wireless Communication, Image Processing, 
Digital Signal Processing, Information Theory, and Digital 
Communication. 
 
 
Fourth Author: Md. Najim Uddin Mondal completed his 
B.Sc. in Electronics & Telecommunication Engineering 
(ETE) from Rajshahi University of Engineering & 
Technology (RUET), Bangladesh, in 2010. He is working at 
Grameenphone, ROM, Faridpur, Bangladesh.



 

 

 


